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Diabetes can lead to various health problems and complications, such as 
cardiovascular disease, kidney damage (nephropathy), eye issues, 
neuropathy, and foot ailments. Therefore, early diagnosis of diabetes can be 
immensely beneficial in preventing the development of these conditions. 
Utilizing machine learning is one method to detect diabetes in individuals 
at an early stage. In this study, we compare the performance of nine 
machine-learning classification models in predicting diabetes. These 
models include XGBoost, gradient boosting, AdaBoost, logistic regression, 
decision tree, KNN, perceptron, random forest, and naïve bayes. We utilize 
several evaluation metrics, focusing on the f1-score, area under the curve 
(AUC), and computational runtime. Our comparison reveals that complex 
tree-based models exhibit the highest f1-score and AUC, albeit with longer 
execution times. 
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1. Introduction 

Diabetes is a persistent health condition characterized by its chronic nature, impacting the 
process through which the body converts food into energy, giving rise to life-threatening, debilitating, 
and expensive complications while diminishing overall life expectancy. In individuals with diabetes, 
the body either produces insufficient insulin or struggles to utilize it effectively. When insulin is 
deficient or cells fail to respond appropriately, excess blood sugar remains in the bloodstream. This 
prolonged elevation of blood sugar levels can lead to severe health complications, including but not 
limited to heart disease, vision impairment, and kidney disease [1].  

Diabetes manifests in two primary types: Type 1 diabetes manifests through an autoimmune 
reaction, where the body targets itself, disrupting insulin production. This form of diabetes, 
comprising 5-10% of cases, is believed to result from this self-directed immune response. In contrast, 
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Type 2 diabetes emerges primarily from insulin resistance or inadequate insulin secretion. Lifestyle 
factors such as dietary choices and physical activity levels heavily influence its development. Type 2 
diabetes, the most prevalent form, accounts for approximately 90-95% of all diabetes diagnoses [2].  

Approximately 537 million adults aged 20-79 grapple with diabetes worldwide, equating to 1 in 
10 individuals. Projections indicate a rise to 643 million by 2030 and a further increase to 783 million 
by 2045. Over three-quarters of adults with diabetes reside in low-income and middle-income 
countries. In 2021, diabetes caused 6.7 million deaths, equating to one every 5 seconds. Additionally, 
diabetes has a significant economic impact, with health expenditures totaling at least USD 966 billion, 
representing a 316% increase over the past 15 years [3].  

According to data from the American Diabetes Association [4], in 2021, diabetes affected 38.4 
million individuals in the United States, comprising 11.6% of the total population. Among these, 29.7 
million received a formal diagnosis. At the same time, 8.7 million remained undiagnosed, as shown 
in Figure 1, where the X-axis is the time period. The Y-axis is an age-adjusted percentage of total 
diabetes; diagnosed diabetes has a positive slope from 2001 to 2020, and undiagnosed diabetes has 
a constant slope throughout these years [4]. Approximately 1.2 million Americans are annually 
diagnosed with diabetes. Furthermore, in 2021, a staggering 97.6 million individuals aged 18 and 
older in the United States exhibited signs of prediabetes. 
 

 
Fig. 1. Diabetes diagnoses statistics 

  

Early diagnosis of diabetes, along with analysis of its causes and its relationship with health 
factors, is of paramount importance. One of the methods to achieve this goal is using artificial 
intelligence techniques to predict diabetes. Sun et al., [5] employed machine learning (ML) models 
and encryption methods to jointly analyze vertically partitioned data. They aimed to explore the 
relationship between type 2 diabetes mellitus (T2DM) status and annual healthcare costs across 
different healthcare categories. They proposed an extension of the personal health train (PHT) 
architecture. This design empowers researchers to deploy data processing algorithms (application 
trains) directly to individual data sources, eliminating the need to centralize the data required for 
analysis.  

The global burden of diabetes (GBD) 2021 conducted estimates of diabetes prevalence and 
impact across 204 countries and territories, spanning 25 age groups for both males and females 
individually and collectively. These estimates encompassed the burden of lost years in terms of 
healthy life, quantified as disability-adjusted life-years (DALYs, comprising years of life lost (YLLs) and 
years lived with disability (YLDs)). The death ensemble model approach calculates diabetes-related 
deaths [6]. They employed a methodical approach, conducting systematic reviews and opportunistic 
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searches. Data contributed by country collaborators and the world health organization (WHO) are 
also utilized in this process. In addition, Jamali et al., [7] present a dynamic approach, where their 
examination of limitations underscores the significance of offloading computation within the 
confines of time constraints.  

In conducting this cohort analysis, Schön et al., [8] utilized a sample of 927 participants, aged 18– 
69 years, from the German diabetes study (GDS) who had recently developed Type 2 diabetes. These 
participants were positioned within a previously established two-dimensional tree based on nine 
straightforward clinical and laboratory variables, adjusted for age and sex. The assessment of insulin 
sensitivity was performed using a hyper-insulinaemic-euglycaemic clamp.  

The growing accessibility of data and ML tools has led to more researchers developing datasets 
and models to aid in analyzing and alleviating the crisis, which is evaluated by implementing different 
ML methods for the problem of opioid disorder [9]. Gaudelet et al., [10] developed graph machine 
learning (GML), which introduces a new classification of ML techniques that exploit the structural 
characteristics inherent in graphs and other irregular datasets, enabling the acquisition of effective 
feature representations.  

Mbunge et al., [11] implemented various sophisticated ML algorithms such as logistic regression, 
artificial neural networks (ANN), support vector machines (SVM), random forest, decision trees, 
Adaboost, bagging, and XGBoost have been employed to address diverse diseases.  

In another usage, Ibrahim et al., [12] utilized COVID-19 datasets from Morocco, Sudan, Uganda, 
Rwanda, Cameroon, Gabon, South Africa, Namibia, Nigeria, and Senegal; predictions for the COVID19 
pandemic were made. In Burkina Faso, random forest regressors and gaussian processes were 
applied to forecast malaria epidemics.  

Soltaninejad et al., [13] developed a holistic framework for sales prediction by combining 
technical analysis, time series modeling, ML, neural networks, and random forest techniques into an 
integrated approach.  

Artificial intelligence systems have the potential to aid healthcare professionals and public health 
institutions in enhancing healthcare service delivery by facilitating early disease detection, 
prediction, diagnosis, identification of diseases, and mapping hotspot areas, as suggested by Mbunge 
et al., [11] and by Shill et al., [14] in the process of developing new learning methods.  

In addition, Abubakar et al., [15] implemented a range of deep learning models, including VGG16, 
VGG19, ResNet50, ResNet101, ResNet152, DenseNet121, DenseNet201, AlexNet, and Xception, the 
researchers sought to detect malaria in images of blood smears. Their investigation involved 
extracting discriminative features from the dataset images and employing machine-learning 
algorithms to categorize each sample, discerning whether a patient was infected based on a given 
blood sample.  

Maydanchi et al., [16] conducted screening for risk factors, which expedites the identification of 
cardiovascular diseases (CVD), leading to a swifter and more efficient response, thereby mitigating 
the risk of mortality. This paper evaluates six classification models such as AdaBoost, random forest, 
decision tree, KNN, naïve bayes, and perceptron, in forecasting CVD symptoms.  

Haseli et al., [17,18] employed a multi-faceted approach in their decision-making process, 
emphasizing the need to consider numerous factors and analyze results from diverse viewpoints. This 
underscores the complexity inherent in tackling multi-criteria decision-making problems.  

Hennebelle et al., [19] proposed an ML-based smart healthcare framework within an integrated 
IoT-edge-cloud computing system. This system analyzes diabetes risk factors using medical 
sensors/devices and predicts the incidence of Type 2 diabetes in individuals.  
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Toscano-Pulido et al., [20] Introduce a tailored hybrid evolutionary multi-objective optimization 
(EMO) algorithm to improve quality within the Chesapeake Bay Watershed. This algorithm selects 
cost-effective best management practices (BMPs) to mitigate pollution levels, tackling the 
complexities of large-scale optimization.   

MacKay et al., [21] highlight that ML is frequently employed to identify patterns and trends within 
extensive sets of predictor variables, which would be challenging for researchers to discern 
otherwise. The authors emphasize that restricting data sets to only a handful of predetermined 
variables may impede the full realization of the potential of ML tools in healthcare.  

Considering the mentioned usage of ML in health care, we can narrow it down to find the 
literature on Diabetes.   

Joshi et al., [22] introduced a study on diabetes prediction using ML techniques to forecast 
diabetes using three distinct supervised ML approaches: ANN, logistic regression, and SVM. In 
another paper, the methodology of Modak et al., [23] undergoes thorough scrutiny via performance 
evaluation metrics such as the confusion matrix, sensitivity, and accuracy measurements. CatBoost 
is the most efficacious among the ensemble techniques assessed, demonstrating a notable accuracy 
rate.  

An approach combining semi-supervised learning with extreme gradient boosting was deployed 
by Tasin et al., [24] to forecast insulin characteristics within a confidential dataset. Methodologies 
like SMOTE and ADASYN were employed to address the issue of class imbalance. The researchers 
explored various ML classification techniques, including decision trees, SVM, random forest, logistic 
regression, k-nearest neighbors (KNN), and assorted ensemble strategies to identify the optimal 
algorithm for prediction. Following extensive training and testing of all classification models, the 
proposed system demonstrated its superior performance with the XGBoost classifier utilizing the 
ADASYN methodology, achieving an accuracy rate of 81%, an f1-score of 0.81, and an AUC of 0.84. 
Additionally, a domain adaptation approach was implemented to underscore the adaptability and 
versatility of the proposed system.  

Moreover, Mujumdar et al., [25] found that their previous method's classification and prediction 
accuracy were unsatisfactory. In their paper, they propose a new diabetes prediction model aiming 
to enhance the classification of diabetes. This model integrates additional external factors associated 
with diabetes and standard factors like Glucose, BMI, Age, and Insulin. Including these new factors 
substantially improves classification accuracy compared to their previous dataset. Moreover, they 
introduce a pipeline model for diabetes prediction to enhance classification accuracy further.  

Lai et al., [26] constructed predictive models employing gradient boosting machine (GBM) and 
logistic regression techniques. The effectiveness of these models in discrimination was evaluated 
using the AUC of the receiver operating characteristics (ROC). Sensitivity, indicating the accuracy in 
identifying Diabetes Mellitus patients, was refined using the adjusted threshold method and the class 
weight method. Furthermore, comparisons were drawn with alternative learning machine methods, 
including decision trees and random forests.  

The study by Sarwar et al., [27] explores predictive analytics in healthcare, employing six distinct 
ML algorithms. A dataset comprising patient medical records is acquired for experimental purposes, 
with each algorithm applied to the dataset. The performance and accuracy of these algorithms are 
thoroughly examined and juxtaposed. By comparing various ML techniques utilized in this 
investigation, insights are gained into which algorithm proves most effective for diabetes prediction. 
The primary objective of this paper is to assist healthcare professionals and practitioners in the early 
detection of diabetes through the utilization of ML techniques.  
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Saru and Subashree [28] utilized data mining techniques to explore and identify suitable 
approaches for the efficient classification of a diabetes dataset and the extraction of valuable 
patterns. This study conducted medical bioinformatics analyses to predict diabetes. The WEKA 
software served as the mining tool for diabetes diagnosis. The Pima Indian diabetes database 
obtained from the UCI repository was employed for analysis. The dataset was thoroughly examined 
to develop an effective model for predicting and diagnosing diabetes.  

Our study is unique in the recent diabetes dataset as the sole comprehensive comparison of nine 
ML models for predicting diabetes. This aspect makes our work significant by filling a gap in existing 
literature and offering readers a broad perspective on these models' performance. The objective of 
our study is to compare the performance of these models, including XGBoost, gradient boosting, 
AdaBoost, logistic regression, decision tree, KNN, perceptron, random forest, and naïve bayes, in 
predicting diabetes. In Section 2, we discuss the dataset, data preparation, and the classification 
methods utilized in this study. Section 3 presents the results of evaluation metrics. Finally, Section 4 
outlines the conclusions drawn from this study.  

  

2. Methodology   

The research draws upon the diabetes prediction dataset obtained from Kaggle. This dataset 
represents a comprehensive compilation of medical and demographic attributes of patients, 
meticulously curated alongside their corresponding diabetes status, classified as either positive or 
negative. Through its rich repository of patient data, encompassing vital health indicators and 
personal information, the dataset serves as a valuable resource for investigating predictive models 
and advancing our understanding of diabetes diagnosis.  

The dataset contains data from 100,000 individuals designed for the prediction of diabetes. The 
dataset consists of both categorical and continuous variables. Table 1 presents these variables. The 
categorical variables include gender, hypertension, heart disease, and smoking history. The target 
variable, diabetes, is also a categorical variable. Patients are categorized into two classes: class 0 for 
those without diabetes and class 1 for those with diabetes. In addition, age, BMI (Body Mass Index, 
indicating the level of body fat), HbA1c (meaning the average level of blood sugar during the past 
two to three months), and blood glucose are variables that are continuous.  
 

Table 1  
Categorical and continuous variables 

Feature  Type  Range of Value 

Gender  Categorical  Male/ Female 

Age  Continuous  Float [0.08, 80] 

Hypertension  Categorical  0/ 1 

Heart Disease  Categorical  0/ 1 

Smoking History  Categorical  never/ No info/ current/former/ ever/ not current 

BMI  Continuous  Float [10, 95.7] 

HbA1c level  Continuous  Float [3.5, 9] 

Blood Glucose Level  Continuous  Integer [80, 300] 

Diabetes  Categorical  0/ 1 

 Exploratory data analysis (EDA) analyzes datasets through statistical and visual methods to 
understand their structure, patterns, and potential relationships between variables. This article has 
two types of analysis: Univariate analysis and bivariate analysis. In the following, we will discuss them.  
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Figure 2 presents a count chart showing the distribution of a population by gender, revealing a 
predominant proportion of females at 58.41%, compared to 41.57% of males, with a marginal 
representation of non-binary or other identified genders at 0.02%.  

 

Fig.2. Distribution of a population by gender 

  

Figure 3 provides a stark visual representation of the prevalence of hypertension within the 
surveyed cohort. A commanding majority of the population, constituting 92.24%, is denoted as not 
having hypertension, while a minority of 7.76% identified as hypertensive.  

 

Fig.3. Prevalence of hypertension 
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Figure 4 illustrates the distribution of heart disease within the study's demographic, where an 
overwhelming 95.92% of participants do not have heart disease, differing sharply from the 4.08% 
who do. 

Fig.4. Distribution of heart disease 

  

Figure 5 delineates the smoking history profiles within the examined sample, providing a 
multifaceted perspective on smoking behaviors. The largest group, constituting 35.78%, reports 
never having smoked, closely followed by 34.21%, for which there is no information regarding their 
smoking habits. Active smokers account for 9.57% of the population. In comparison, former smokers 
comprise a comparable 9.67%, indicating a balanced distribution between current and past smokers 
within the cohort. Notably, 4.16% are identified as 'ever' smokers, a category that likely encapsulates 
individuals who have smoked infrequently or sporadically. Lastly, the category 'not current' smokers, 
representing 6.62%, may include individuals who have ceased smoking recently and have not yet 
classified themselves as 'former' smokers.  

 

 
Fig.5. Distribution of smoking history 

  

Figure 6, central to our investigation, delineates the distribution of diabetes within the studied 
cohort, serving as the target feature. The graphical representation illustrates a pronounced 
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imbalance, with 91.18% of the sample population not being affected by diabetes. In comparison, a 
minority of 8.82% have been diagnosed with the condition.   

  

 
Fig.6. Distribution of diabetes 

Figure 7 presents a dual-plot graphical analysis of the age distribution within the dataset. The left 
plot showcases a histogram overlaid with a kernel density estimate, providing a visual summary of 
the age distribution among the study participants. The histogram's bars represent the count of 
individuals within specific age ranges, revealing the data's skewness or symmetry. The mean age is 
marked by a dashed red line and annotated at 41.79 years, with a standard deviation of 22.46 years, 
implying a wide age range among the subjects. The kernel density curve accentuates the overall 
distribution shape, indicating variability and potential outliers in age. The right plot features a box 
plot, a robust representation of age dispersion through quartiles. The box encloses the interquartile 
range (IQR), which spans 35 years, reflecting the middle 50% of the data, centered around a median 
age of 43. 
 

Fig.7. Histogram and boxplot for age 
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Fig.8. Histogram and boxplot of BM 
 

In Figure 8, we compare BMI distribution among participants using a histogram and a box plot. 
This comparison is essential for predicting diabetes because BMI is known to be a risk factor for the 
condition. On the left, the histogram reveals the frequency of various BMI scores, shaded in blue, 
with a corresponding density curve that outlines the distribution's shape. The mean BMI is pinpointed 
at 27.32 with a standard deviation of 6.77, highlighted by a dashed red line, suggesting a moderate 
average BMI but with considerable spread across the population. This spread indicates the 
population's weight status variability, from underweight to obese categories. To the right, th  box 
plot provides a more detailed view of the BMI distribution's quartiles. The median BMI, identical to 
the mean, is 27.32, indicating a symmetric distribution of BMI values around the central tendency. 
An IQR of 6.46 suggests that the middle 50% of BMI values are relatively clustered.           

Figure 9 offers a composite view of the distribution of Hemoglobin A1c (HbA1c) levels in the 
dataset, a critical biomarker for diabetes management and diagnosis. The histogram on the left panel 
illustrates the frequency distribution of HbA1c levels across the study population, overlayed with a 
kernel density curve that emphasizes the data's distribution pattern. The mean HbA1c level is at 
5.53%, as the dashed red line indicates, with a standard deviation of 1.07%. The right panel features 
a box plot that delineates the quartile distribution of HbA1c levels, where the median is slightly higher 
than the mean at 5.80%, hinting at a slight right skew in the data. The IQR is relatively narrow at 
1.40%, signifying that the central 50% of HbA1c values are clustered closely around the median. 
However, outliers are present, as shown by the points beyond the whiskers.  

 
Fig.9. Histogram and boxplot of Hemoglobin A1c 

 
Figure 10 provides a close look at the distribution of blood glucose levels, a vital indicator for 

diagnosing and monitoring diabetes. With its overlaying kernel density estimation, the histogram on 
the left side visualizes the distribution of blood glucose levels among participants. The graph exhibits 
several peaks, indicating possible groupings or ranges of values within the data. The mean value is 
138.22 mg/dL, delineated by a dashed red line and a 40.91 mg/dL standard deviation. This relatively 
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high mean, in conjunction with the observed variability, might suggest a skew towards higher glucose 
levels within this particular cohort, which could be indicative of a prevalence of prediabetes or 
undiagnosed diabetes. In contrast, the box plot on the right offers a succinct summary of the data's 
dispersion via quartiles. The median is slightly higher than the mean at 140.00 mg/dL, reinforcing the 
skew observed in the histogram. An IQR of 59.00 mg/dL indicates a broad middle range of glucose 
values, and the presence of outliers, as evidenced by the points beyond the whiskers, suggests 
significant deviations from typical glucose levels in some participants.  

 

 
Fig.10. Histogram and boxplot of blood glucose level 

Figure 11 displays a bar chart that quantifies the incidence of diabetes across gender divisions 
within a dataset. It depicts 51,714 females without diabetes and 4,447 with the condition. The male 
population shows 35,932 individuals without diabetes and 4,035 with it. The 'Other' gender category 
is represented by a nominal count of 18 individuals with diabetes.   

 

 
Fig.11. Diabetes incidence across genders: bar chart analysis 

  

Figure 12 presents a bar chart that explores the relationship between hypertension and diabetes 
within a given population. The chart shows that among individuals without hypertension, 82,289 do 
not have diabetes, and 6,396 do. Conversely, of those with hypertension, 5,375 are not diabetic, and 
a significant number, 2,086, have diabetes. This notable difference in the diabetic count between 
those with and without hypertension may suggest a correlation between hypertension and the 
prevalence of diabetes.  
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Fig.12. Hypertension and diabetes: bar chart analysis 

  

Figure 13 shows a bar chart that correlates the occurrence of heart disease with the prevalence 
of diabetes. Among individuals without heart disease, 85,008 do not have diabetes, whereas 7,215 
do, indicating a lower relative prevalence of diabetes within this group. In stark contrast, the group 
with heart disease has a smaller non-diabetic count of 2,656 but a notably higher diabetic count of 
1,267, suggesting a substantial prevalence of diabetes among those with heart disease.  

 

 
Fig.13. Heart disease and diabetes: bar chart analysis 

 
Figure 14 conveys a detailed bar chart that delineates the relationship between individuals' 

smoking history and diabetes status. The 'Never' smokers group is the largest among those without 
diabetes, totaling 31,061, and includes 3,337 individuals with diabetes. Similarly, for the 'No info' 
category, there are 31,442 without diabetes and a smaller fraction of 1,445 with it. The 'Current' 
smokers are fewer, with 8,249 not having diabetes and 948 with the condition. 'Former' smokers 
show a count of 7,709 without diabetes and a higher proportion of 1,590 with diabetes compared to 
'Current' smokers. Those categorized as 'Ever' smokers have 3,526 without diabetes and 472 with it. 
Lastly, the 'Not current' smokers, possibly indicating those who have quit recently, include 5,677 
without diabetes and 690 with the condition.  
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Fig.14. Smoking history and diabetes: bar chart analysis 

 

Figure 15 pairs a histogram with a box plot to compare the age distribution of a population 
segmented by diabetes status. The histogram on the left indicates a bimodal age distribution with 
two peaks, one for the younger demographic and another for an older age group. It shows that the 
mean age of individuals without diabetes class 0 is 39.94 years, with a standard deviation of 22.23 
years. In contrast, the mean age for those with diabetes class 1 is significantly higher at 60.93 years, 
with a narrower standard deviation of 14.55 years, suggesting less variability in age among diabetic 
individuals. The box plot on the right further explores this age disparity. For non-diabetic individuals, 
the median age is 40 with an IQR of 35 years, indicating a wide spread of ages. For those with 
diabetes, the median age jumps to 62 years with a tighter IQR of 20 years, reaffirming the histogram's 
indication of a more concentrated age range within the diabetic segment of the population.  

 

 
Fig.15. Comparing age distribution by diabetes status: histogram and box plot analysis 

  

Figure 16 combines a histogram and a box plot to examine the BMI distributions relative to 
diabetes status within a population. The histogram on the left displays a sharp peak for the non-
diabetic group (class 0) with a mean BMI of 26.87 and a standard deviation of 6.51, indicating a 
moderate average BMI with some variability. For the diabetic group (class 1), the mean BMI is higher 
at 32.00, with a standard deviation of 7.56, suggesting that individuals with diabetes tend to have an 
average BMI.  
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                 Fig.16. Examining BMI distributions by diabetes status: histogram and box plot analysis 

 

The box plot on the right summarizes the BMI data, segmented by diabetes status. For the 
nondiabetic group, the median BMI is 27.32, with an IQR of 6.18, showing a relatively normal 
distribution of BMI values. In contrast, the diabetic group's median BMI increases to 29.98 with a 
broader IQR of 8.62, indicating a heavier distribution towards higher BMI values.  

Figure 17 provides an insightful look at the HbA1c levels stratified by diabetes status within a 
study population. The histogram to the left highlights a stark contrast in HbA1c levels between 
individuals without diabetes (class 0) and those with the condition (class 1). For the non-diabetic 
group, the mean HbA1c level is relatively low at 5.40, with a standard deviation of 0.97, portraying a 
concentration of lower HbA1c values. On the other hand, the diabetic group exhibits a higher mean 
HbA1c level of 6.93 with a standard deviation of 1.08, indicating a shift towards higher HbA1c values 
typically associated with diabetes.  

The box plot on the right echoes these findings, showing a median HbA1c level of 5.80 for 
nondiabetics with an IQR of 1.40, compared to a significantly higher median of 6.60 for diabetics with 
an IQR of 1.40.   

 

Fig.17. HbA1c levels stratified by diabetes status: histogram and box plot analysis 

  

Figure 18 shows a histogram and a box plot to analyze the distribution of blood glucose levels 
concerning diabetes status. The histogram reveals a clear distinction: individuals without diabetes 
(class 0) have a mean blood glucose level of 132.82 mg/dL with a standard deviation of 34.24 mg/dL, 
suggesting moderate glucose levels with some spread. For those diagnosed with diabetes (class 1), 
the mean level escalates to 194.03 mg/dL and exhibits more significant variability, as indicated by a 
58.63 mg/dL standard deviation.  
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The box plot on the right accentuates this differentiation, showing a median blood glucose level 
of 140.00 mg/dL for non-diabetics, with an IQR of 58.00 mg/dL. The diabetic group's median is 
significantly higher, at 160.00 mg/dL, and the IQR widens to 95.00 mg/dL, signifying a broader 
dispersion of values, which is typical given the nature of the disease.  

Fig.18. Blood glucose levels distribution by diabetes status: histogram and box plot analysis 

  

Figure 19 shows the correlations among features. The highest positive correlations identified are 
between diabetes and blood glucose level at 0.42 and diabetes and HbA1c level at 0.4, which are 
considered moderate. A positive correlation of 0.34 is noted between age and BMI. In contrast, 0.26, 
0.25, 0.23, and 0.22 correlations are observed between age and diabetes, age and hypertension, age 
and heart disease, and age and former smoking history, respectively. Furthermore, BMI and diabetes 
show a positive correlation of 0.21, and hypertension and diabetes correlate at 0.2, all classified as 
weak positive correlations. Moderate positive correlations are observed within the dataset, notably 
between diabetes and blood glucose level at 0.42 and diabetes and HbA1c level at 0.4. Weak positive 
correlations are noted, including age and BMI at 0.34, age and diabetes at 0.26, age and hypertension 
at 0.25, age and heart disease at 0.23, age and former smoking history at 0.22, BMI and diabetes at 
0.21, and hypertension and diabetes at 0.2.  

Negligible correlations are observed for gender other with various health metrics: a slight positive 
correlation with blood glucose level at 0.00046 and BMI at 0.00012; and minor negative correlations 
with smoking history No Info at -0.00069, smoking history ever at -0.0011, HbA1c level at -0.0015, 
heart disease at -0.0027, hypertension at -0.0038, diabetes at -0.0041, and both former and current 
smoking history at -0.0043, all indicating a lack of significant linear relationship. Weak negative 
correlations include smoking history No Info and age at -0.28, smoking history No Info with smoking 
history former and smoking history current, both at -0.24, as well as between smoking history never 
and smoking history former, and smoking history current with smoking history never, each at -0.24. 
Additionally, Figure 19 shows that smoking history No Info and BMI have a correlation of -0.22, with 
a similar pattern observed between smoking history No Info and current smoking history at -0.2. A 
moderate negative correlation is noted between smoking history No Info and never having smoked 
at -0.55. 

In preprocessing the dataset, several steps were taken to ensure its quality and suitability for 
analysis. Firstly, it was observed that there were no null samples present, indicating that the dataset 
was relatively clean in this regard. However, a substantial number of rows were found to be 
duplicated, totaling 3854 duplicates. These duplicate rows were removed to avoid skewing the 
analysis and to ensure the dataset's integrity.  

Next, the dataset was split using a 20-80 split, with 20% reserved for testing and 80% for training. 
Additionally, standard scaling was applied to the data to ensure that all features were on a similar 
scale, which can aid in the performance of specific ML algorithms.  
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The dataset was also examined for class imbalance, revealing that class 0 had 87664 samples 
before balancing. In comparison, class 1 had 8482 samples, indicating a moderate imbalance. This 
paper used the Synthetic Minority Over-sampling Technique (SMOTE) to deal with the data 
imbalance.  

 

 
Fig.19. Correlation table of the variables 

  

Furthermore, certain features underwent encoding for compatibility with ML algorithms. 
Hypertension and heart disease features were encoded as binary variables, while gender and 
smoking history were subjected to one-hot encoding. These encoding techniques help convert 
categorical variables into a format that ML models can interpret effectively. On the other hand, age, 
BMI, HbA1c, and blood glucose level features did not require encoding, likely due to their numerical 
nature and direct usability in analysis without transformation.  

The classification ML methods compared in this paper are perceptron, KNN, naïve bayes, XGBoost, 
gradient boosting, AdaBoost, logistic regression, decision tree, KNN, perceptron, random forest, and 
naïve bayes.  

The perceptron is a supervised learning algorithm specifically designed for binary classification 
tasks. It allows neurons to process and learn from elements within the training dataset [29]. The KNN 
algorithm, a versatile supervised ML technique, is well-known for addressing classification and 
regression issues [30]. Naïve Bayes works by estimating the probability of a post-test outcome using 
the values of predictive variables. It then assigns new samples to classes by comparing these 
probabilities [31]. Boosting algorithms seek to build robust predictive models by leveraging multiple 
weak learners in combination. This ensemble technique includes methods like AdaBoost, XGBoost, 
and gradient boost [32]. Random forest and decision tree are both supervised learning methods. 
Random forest applies a collection of decision trees to improve prediction accuracy [33].  
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On the other side, a decision tree model functions by iteratively dividing the dataset into subsets 
based on feature values, aiming to create more uniform subsets regarding the target variable [34]. 
Logistic regression, a cornerstone in predictive modeling, leverages the logistic function's 
mathematical principles to classify data into binary categories. By mirroring networks of 
interconnected nodes, it adeptly handles complex analyses, making informed predictions on binary 
target variables across diverse fields [35,36].  

Each ML method has a specific set of parameters. The parameters were fine-tuned with 
GridSearchCV to optimize performance. In the XGBoost model, the learning rate is set to 0.2, which 
is critical in controlling the step size at each iteration to minimize the loss function. The max depth 
parameter is chosen as 7, determining the maximum depth of a tree, which is essential for capturing 
the complexity of data without overfitting. Additionally, n estimators is set to 300, indicating the 
number of trees in the model, where a higher number can improve performance but increases the 
risk of overfitting and computational cost.  

For gradient boosting, the learning rate of 0.2 is crucial as it influences the rate at which the 
model learns, balancing speed and accuracy. The max depth is set to 5. The n estimators parameter, 
set at 300, is significant as it dictates the number of sequential trees built, affecting both model 
accuracy and complexity.  

In AdaBoost, the learning rate, set at 1.0, is essential for adjusting the weights of the weak 
learners, determining how quickly the algorithm adapts. The n estimators parameter, set to 200, 
defines the number of weak learners to be used, impacting the model's ability to generalize.  

For logistic regression, the C parameter, valued at 0.1, controls the degree of regularization, 
influencing the complexity and generalizability of the model. In order to further improve the model's 
robustness, the penalty type, L2, is critical for controlling overfitting. A linear solver, liblinear, is used 
to solve the problem. This solver is ideal for small datasets as well as binary classification problems.  

In the decision tree model, the criterion of entropy is significant for determining the quality of a 
split, directly impacting the model's ability to capture relevant patterns in the data. The min samples 
leaf parameter, set at 2, is key for preventing the tree from growing too complex and overfitting. Min 
samples split, set at 5, helps decide when a node will be split into further sub-nodes, balancing detail 
and overfitting.  

KNN relies on the Manhattan metric to define the distance measure between nearest neighbors, 
which significantly influences the model's performance. The n neighbors parameter, set to 3, 
determines the number of neighbors to consider, which is crucial for the classification decision. The 
weights parameter, set to distance, ensures that closer neighbors significantly influence the 
outcome, enhancing the model's accuracy.  

In the perceptron model, the alpha value of 0.0001 is important as it regulates the learning rate, 
affecting the speed and quality of convergence. The max iter parameter, set at 1000, defines the 
maximum number of passes over the training data, balancing computation time and model accuracy. 
The L2 penalty helps prevent overfitting by adding a regularization term to the loss function.  

For the random forest model, the n estimator parameter, set to 500, is crucial as it indicates the 
number of trees in the forest. The criterion of entropy is used to measure the quality of a split, 
influencing the decision-making of the individual trees. The min samples split, set at 2, is essential for 
defining the minimum number of samples required to split an internal node, affecting the depth and 
complexity of the trees.  

In the naïve bayes model, var smoothing, set at 1e-6, is a crucial parameter as it adds a value to 
the variance of the distribution, helping to smooth categorical data and improve model performance. 
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Each parameter plays a crucial role in the respective models, affecting their ability to learn from the 
data and make accurate predictions. These parameters are shown in Table 2. 
 

Table 2  

Parameters of classification models 
Model Parameters 

XGBoost learning rate: 0.2, max depth: 7, n estimators: 300 

Gradient Boosting learning rate: 0.2, max depth: 5,  n estimators: 300 

AdaBoost learning rate: 1, n estimators: 200 

Logistic Regression C: 0.1, penalty: l2, solver: liblinear 

Decision Tree criterion: entropy, min samples leaf: 2, min samples split: 5 

KNN metric: Manhattan, n neighbors: 3, weights: distance 

Perceptron alpha: 0.0001, max iter: 1000, penalty: l2 

Random  Forest criterion: entropy, min samples split: 2, n estimators: 500 

Naïve Bayes var smoothing: 1e-6 

  

3. Result 

This section aims to comprehensively evaluate the performance of nine distinct supervised ML  
classification models. The models are A Comparison of Methods for Predicting Diabetes: XGBoost, 
gradient boosting, AdaBoost, logistic regression, decision tree, KNN, perceptron, random forest, 
naïve bayes. These models are specifically evaluated in their ability to predict the occurrence of 
diabetes classification. This analysis provides valuable insights into the application of ML methods in 
diabetes prediction.   

In evaluating the performance of ML models, accuracy stands out as one of the most important 
metrics. This metric is a fundamental yardstick for assessing the model's overall ability to make 
correct predictions, providing a quantitative measure of its performance across various tasks and 
datasets. In this study, accuracy represents the number of samples that are correctly classified as 
either a person with diabetes or a person without diabetes overall.   

Table 3 presents the accuracy of each model. This table shows that XGBoost and gradient boosting 
exhibit the highest accuracy at 97%, while perceptron has the lowest accuracy, standing at 85%.   

In most literature comparing the prediction performance of classification models, accuracy is the 
primary metric. However, in a dataset with an imbalance issue, this metric is unreliable because the 
number of samples in one of the classes significantly exceeds the number in another, leading 
accuracy to primarily reflect the model's performance on predicting the majority class. As mentioned 
in the previous section, the majority group is class 0, with 87,664 samples, and the minority group is 
class 1, with 8,482 samples. This moderately imbalanced dataset necessitates using other metrics to 
compare the models.    

In detecting individuals with heart disease, prioritizing classifying samples within class 1 over class 
0 is essential. This is because giving precedence to predicting diabetes in individuals at risk holds 
greater importance than predicting its absence. Consequently, we assess the model's performance 
on class 1 using metrics such as precision, recall, and f1-score. 

The precision for class 1 indicates the proportion of samples truly belonging to class 1, and the 
model correctly classifies them within class 1. The recall score for class 1 denotes the percentage of 
samples in class 1 that are accurately classified. As depicted in Table 3, gradient boosting exhibits the 
highest precision for class 1 at 93%, while perceptron demonstrates the lowest precision at 35%. 
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Additionally, logistic regression achieves the highest recall for class 1 at 89%, whereas naïve bayes 
records the lowest recall at 63%. Since each model may have the highest rank in either precision or 
recall metrics, making direct comparisons becomes challenging. Therefore, we use the f1-score, the 
harmonic mean of precision and recall.   

Table 3 shows that gradient boosting, XGBoost, and AdaBoost exhibit the highest f1-scores at 
81%, 80.5%, and 79%, respectively. These models demonstrate closely competitive performances, 
and notably, all belong to the family of tree-based models. The lowest F1-score rank is attributed to 
the perceptron at 49%.  
 

Table 3  

A comprehensive evaluation of accuracy, f1-score, precision, and recall metrics for class1 and class 0  

Model  Accuracy  
 Class 0 (No)    Class 1 (Yes)  

Precision  Recall  F1- score  Precision  Recall  F1-score  

Gradient Boosting  97%  97%  100%  98%  93%  71%  81%  

XGBoost  97%  97%  99%  98%  90%  73%  80%  

AdaBoost  96%  98%  98%  98%  80%  78%  79%  

Random Forest  96%  98%  98%  98%  77%  76%  77%  

Decision Tree  95%  98%  97%  98%  74%  75%  75%  
KNN  93%  98%  94%  96%  57%  78%  66%  

Naïve Bayes  94%  96%  97%  97%  68%  63%  65%  

Logistic Regression  89%  99%  89%  93%  43%  89%  58%  

Perceptron  85%  98%  85%  91%  35%  83%  49%  

 
The ROC curve is another metric to evaluate and compare ML prediction models. The x-axis of 

the curve represents the false positive rate. This rate corresponds to the ratio of samples incorrectly 
classified as class 1 to the total number of samples that do not belong to class 1. The yaxis of the 
curve illustrates the true positive rate, also known as recall. We can construct ROC curves by 
systematically computing these two rates for each classifier applied to class 1 within the dataset. 
Figure 20 shows the ROC curve of the nine models. The model with a larger AUC is regarded as the 
superior predictor for identifying the presence of diabetes.  adaBoost, gradient boosting, and 
XGBoost achieve the highest ranks with AUC values of 0.977, 0.976, and 0.974, respectively. Their 
performances are very close to each other in this metric, just as they are in the f1-score. On the other 
hand, the decision tree model secures the lowest rank with an AUC of 0.870.  

 

  
Fig.20. ROC curve for prediction models 
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In this paper, we treat the runtime of the model dataset as the final metric for comparing 
prediction models. Nevertheless, in specific instances, the runtime of the prediction model itself 
might take precedence. Table 4 presents the sorted performances of the nine classification models, 
organized based on their respective runtimes. Among these models, naïve bayes shows the quickest 
runtime of 0.11 seconds, while gradient boosting is the slowest with 144.42 seconds. This disparity 
in runtimes sheds light on the distinct computational efficiencies of these models, providing valuable 
insights for model selection based on time considerations.  

 

Table 4  

Run time of the prediction models  
Model  Second  

Naïve Bayes  0.11  

KNN  0.47  

Perceptron  0.56  

Logistic  
Regression  

0.89  

Decision Tree  0.95  

XGBoost  4.1  

AdaBoost  33.87  

Random Forest  85.1  

Gradient Boosting  144.42  

 

4. Conclusion 

In this research, a comprehensive performance analysis is carried out on nine classification 
models, specifically XGBoost, logistic regression, gradient boosting, AdaBoost, random forest, 
decision tree, KNN, perceptron, and naïve bayes, with the aim of predicting diabetes. The research 
showcases the performance of these ML methods across six evaluation metrics, including accuracy, 
precision, recall, f1-score, AUC of ROC curve, and runtime.   

The dataset exhibits a moderate imbalance; thus, we addressed this imbalance in the training 
dataset using the SMOTE method. However, the test dataset remains imbalanced. It made accuracy 
an inadequate measure for comparing supervised learning models.   

Moreover, as the f1-score serves as a harmonic mean of precision and recall, it encapsulates both 
aspects in a single metric. Consequently, prioritizing the ranking of models based on the f1-score 
becomes a more comprehensive approach, considering both precision and recall simultaneously 
rather than examining them separately. The f1-score rankings from highest to lowest for the first five 
positions are as follows: gradient boosting, XGBoost, AdaBoost, random forest, and decision tree. 
These models exhibit f1-scores that significantly outperform those of other models.   

Moreover, the rankings for AUC, listed from highest to lowest for the first five positions, are as 
follows: AdaBoost, gradient boosting, XGBoost, random forest, and logistic regression. These models 
demonstrate AUC values that notably exceed those of other models.  

Conversely, the rankings for runtime, arranged from quickest to slowest for the first five positions, 
are as follows: naïve bayes, KNN, perceptron, logistic regression, and decision tree. The training time 
of these models is much shorter than that of other models.  

The metrics indicate that tree-based models, especially those employing complex structures like 
bagging and boosting, demonstrate superior predictive capabilities for diabetes; however, their 
computational speed is notably slower than that of other models. This suggests that efforts to 
optimize the efficiency of boosting and bagging methods could significantly improve diabetes 
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prediction. Additionally, for future research, we recommend exploring dimensionality reduction 
techniques such as principal component analysis (PCA), t-distributed stochastic neighbor embedding 
(t-SNE), linear discriminant analysis (LDA), independent component analysis (ICA), and autoencoders 
to reduce data size and enhance runtime efficiency.  

Furthermore, this study emphasizes the significance of leveraging ML, particularly classification 
models, for disease diagnosis, explicitly focusing on conditions like diabetes. Healthcare institutions 
and hospitals are encouraged to implement the recommended models from this study to enable early 
disease detection before it progresses within patients' bodies. The methods, code, and results 
presented in this paper can be utilized to develop software or applications, allowing individuals to 
input their health information and receive awareness regarding their susceptibility to diabetes. Such 
a tool would empower many to proactively prevent diabetes by predicting and seeking advice from 
specialists for preventive measures or diabetes management. Moreover, this application could be 
integrated into smartwatches or smartphones, enabling individuals to monitor relevant health 
criteria continuously.  

In our current study, we employed traditional classification ML methods. However, the capability 
of neural networks and their broad application, which is from decision-making [37] through the 
health industry, convince us to consider them for future research endeavors. These techniques 
include Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), Recurrent 
Neural Networks (RNN), Long Short-Term Memory (LSTM) Networks, Gated Recurrent Unit (GRU) 
Networks, Siamese Networks, and Capsule Networks. Integrating these sophisticated deep learning 
models holds the potential for substantial enhancement in f1-score, AUC, and runtime, enabling 
more effective analysis in subsequent investigation.    
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