Machine Learning Algorithm Library
Comprehensive ML framework with 12 fundamental algorithms
Project Overview
Engineered a comprehensive ML framework implementing 12 fundamental algorithms in Fall 2021, including Linear Regression (direct method, polynomial, SGD), K-Means clustering, PCA with eigenface analysis, K-Nearest Neighbors on the MNIST dataset, Logistic Regression, and Decision Trees, with performance benchmarking across multiple datasets and automated hyperparameter optimization.
Algorithm Implementation Portfolio
Supervised Learning Algorithms
Linear Regression Suite
- Direct Method: Matrix-based analytical solution using normal equations
- Polynomial Regression: Feature expansion with polynomial basis functions
- Stochastic Gradient Descent: Iterative optimization for large datasets
- Regularized Variants: Ridge and Lasso regression implementations
Classification Algorithms
- Logistic Regression: Maximum likelihood estimation with sigmoid activation
- K-Nearest Neighbors: Distance-based classification with multiple distance metrics
- Decision Trees: Information gain and Gini impurity-based tree construction
- Support Vector Machines: Margin maximization with kernel methods
Unsupervised Learning Algorithms
Clustering Methods
- K-Means Clustering: Centroid-based partitioning with multiple initialization strategies
- Hierarchical Clustering: Agglomerative and divisive clustering approaches
- DBSCAN: Density-based clustering for arbitrary cluster shapes
Dimensionality Reduction
- Principal Component Analysis (PCA): Eigenvalue decomposition for feature reduction
- Eigenface Analysis: PCA application for facial recognition systems
- Linear Discriminant Analysis (LDA): Supervised dimensionality reduction
Technical Implementation
Core ML Framework Architecture
class MLAlgorithm:
"""Base class for all machine learning algorithms"""
def __init__(self, hyperparameters=None):
self.hyperparameters = hyperparameters or {}
self.is_fitted = False
self.performance_metrics = {}
def fit(self, X, y=None):
"""Train the algorithm on the provided data"""
raise NotImplementedError
def predict(self, X):
"""Make predictions on new data"""
if not self.is_fitted:
raise ValueError("Algorithm must be fitted before prediction")
raise NotImplementedError
def evaluate(self, X_test, y_test):
"""Evaluate algorithm performance"""
predictions = self.predict(X_test)
return self._calculate_metrics(predictions, y_test)
Linear Regression Implementation
class LinearRegression(MLAlgorithm):
def __init__(self, method='direct', learning_rate=0.01, max_iterations=1000):
super().__init__()
self.method = method
self.learning_rate = learning_rate
self.max_iterations = max_iterations
self.weights = None
self.bias = None
def fit(self, X, y):
if self.method == 'direct':
self._fit_direct(X, y)
elif self.method == 'sgd':
self._fit_sgd(X, y)
self.is_fitted = True
def _fit_direct(self, X, y):
# Normal equation: w = (X^T X)^(-1) X^T y
X_with_bias = np.column_stack([np.ones(X.shape[0]), X])
self.weights = np.linalg.solve(X_with_bias.T @ X_with_bias, X_with_bias.T @ y)
self.bias = self.weights[0]
self.weights = self.weights[1:]
K-Means Clustering Implementation
class KMeansClustering(MLAlgorithm):
def __init__(self, k=3, max_iterations=100, tolerance=1e-4):
super().__init__()
self.k = k
self.max_iterations = max_iterations
self.tolerance = tolerance
self.centroids = None
self.labels = None
def fit(self, X, y=None):
# Initialize centroids using K-means++ algorithm
self.centroids = self._initialize_centroids_plus_plus(X)
for iteration in range(self.max_iterations):
# Assign points to closest centroids
distances = self._calculate_distances(X)
new_labels = np.argmin(distances, axis=1)
# Update centroids
new_centroids = np.array([X[new_labels == i].mean(axis=0)
for i in range(self.k)])
# Check for convergence
if np.allclose(self.centroids, new_centroids, atol=self.tolerance):
break
self.centroids = new_centroids
self.labels = new_labels
self.is_fitted = True
Performance Benchmarking Framework
Multi-Dataset Evaluation
- Iris Dataset: Classification algorithm testing with 3-class problem
- MNIST Dataset: Large-scale digit recognition with 10 classes
- Boston Housing: Regression algorithm evaluation with real estate data
- Wine Dataset: Multi-class classification with feature engineering
- Breast Cancer Wisconsin: Binary classification with medical data
Hyperparameter Optimization
class HyperparameterOptimizer:
def __init__(self, algorithm_class, param_grid, cv_folds=5):
self.algorithm_class = algorithm_class
self.param_grid = param_grid
self.cv_folds = cv_folds
self.best_params = None
self.best_score = -np.inf
def optimize(self, X, y, scoring='accuracy'):
param_combinations = self._generate_param_combinations()
for params in param_combinations:
scores = []
for train_idx, val_idx in self._create_cv_folds(X, y):
X_train, X_val = X[train_idx], X[val_idx]
y_train, y_val = y[train_idx], y[val_idx]
# Train algorithm with current parameters
algorithm = self.algorithm_class(**params)
algorithm.fit(X_train, y_train)
# Evaluate on validation set
score = self._calculate_score(algorithm, X_val, y_val, scoring)
scores.append(score)
# Update best parameters if current is better
avg_score = np.mean(scores)
if avg_score > self.best_score:
self.best_score = avg_score
self.best_params = params
return self.best_params, self.best_score
Advanced Features
PCA with Eigenface Analysis
class PCAEigenfaces(MLAlgorithm):
def __init__(self, n_components=None, variance_threshold=0.95):
super().__init__()
self.n_components = n_components
self.variance_threshold = variance_threshold
self.eigenfaces = None
self.mean_face = None
self.explained_variance_ratio = None
def fit(self, face_images):
# Flatten face images to vectors
X = face_images.reshape(face_images.shape[0], -1)
# Calculate mean face
self.mean_face = np.mean(X, axis=0)
X_centered = X - self.mean_face
# Compute covariance matrix eigendecomposition
covariance_matrix = X_centered.T @ X_centered / X_centered.shape[0]
eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix)
# Sort eigenvalues and eigenvectors in descending order
sorted_indices = np.argsort(eigenvalues)[::-1]
eigenvalues = eigenvalues[sorted_indices]
eigenvectors = eigenvectors[:, sorted_indices]
# Select number of components based on variance threshold
if self.n_components is None:
cumulative_variance = np.cumsum(eigenvalues) / np.sum(eigenvalues)
self.n_components = np.argmax(cumulative_variance >= self.variance_threshold) + 1
self.eigenfaces = eigenvectors[:, :self.n_components]
self.explained_variance_ratio = eigenvalues[:self.n_components] / np.sum(eigenvalues)
self.is_fitted = True
Performance Metrics and Analysis
Comprehensive Evaluation Framework
- Classification Metrics: Accuracy, Precision, Recall, F1-Score, ROC-AUC
- Regression Metrics: MSE, RMSE, MAE, R-squared, Adjusted R-squared
- Clustering Metrics: Silhouette Score, Calinski-Harabasz Index, Davies-Bouldin Index
- Cross-Validation: K-fold, Stratified K-fold, Leave-one-out
Algorithm Comparison Results
def benchmark_algorithms(algorithms, datasets, metrics=['accuracy', 'precision', 'recall']):
results = {}
for dataset_name, (X, y) in datasets.items():
results[dataset_name] = {}
for algorithm_name, algorithm_class in algorithms.items():
# Perform cross-validation
cv_scores = cross_validate(algorithm_class(), X, y,
cv=5, scoring=metrics)
results[dataset_name][algorithm_name] = {
metric: {
'mean': np.mean(cv_scores[f'test_{metric}']),
'std': np.std(cv_scores[f'test_{metric}'])
} for metric in metrics
}
return results
Educational and Research Value
Theoretical Understanding
- Mathematical Foundations: Detailed derivations of algorithm mathematics
- Optimization Theory: Gradient descent variants and convergence analysis
- Statistical Learning: Bias-variance tradeoff and generalization bounds
- Information Theory: Entropy-based measures for decision trees
Practical Applications
- Feature Engineering: Automated feature selection and transformation
- Model Selection: Systematic algorithm comparison methodologies
- Performance Optimization: Computational efficiency improvements
- Scalability Analysis: Big data algorithm adaptation strategies
Technologies Used
- Python for algorithm implementation and framework development
- NumPy for efficient numerical computations and linear algebra
- SciPy for advanced mathematical functions and optimization
- Matplotlib/Seaborn for performance visualization and analysis
- Pandas for data manipulation and experimental results management
- Jupyter Notebooks for educational documentation and examples
The project demonstrates deep understanding of machine learning theory, algorithm implementation expertise, and comprehensive software engineering practices essential for ML research, algorithm development, and data science applications.